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Abstract
The structure of the UV divergences in higher dimensional nonrenormalizable
theories is analysed. Based on renormalization operation and renormalization
group theory it is shown that even in this case the leading divergences
(asymptotics) are governed by the one-loop diagrams the number of which,
however, is infinite. An explicit expression for the one-loop counter term in an
arbitrary D-dimensional quantum field theory without derivatives is suggested.
This allows one to sum up the leading asymptotics which are independent
of the arbitrariness in subtraction of higher order operators. Diagrammatic
calculations in a number of scalar models in higher loops are performed to be
in agreement with the above statements. These results do not support the idea
of the naı̈ve power-law running of couplings in nonrenormalizable theories and
fail (with one exception) to reveal any simple closed formula for the leading
terms.

PACS numbers: 11.10.Gh, 11.10.Hi, 11.10.Kk

1. Introduction

It has been commonly accepted that one cannot use nonrenormalizable interactions beyond
the tree level due to uncontrollable ultraviolet (UV) divergences. Nothing has changed
in understanding of this problem; however, these days it is sometimes suggested that
nonrenormalizable interactions are treated on equal footing with the renormalizable ones.
This specially became fashionable within the context of extra-dimensional theories, all of
them being nonrenormalizable in a usual sense. A wide spread opinion ensures these theories
to be treated as effective ones [1], meaning that one believes that the UV troubles are cured
somehow by including these theories in a more general framework, for instance, a string theory
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while considering the low energy effective action. In the latter case, one distinguishes the
‘relevant’, ‘marginal’ and ‘irrelevant’ operators in the manner of Wilson [2], so that at low
energies one can abandon contributions from irrelevant operators being power suppressed and
end up with relevant and marginal operators which are renormalizable.

However, this is not the case of higher dimensional theories since there are no relevant or
marginal operators there. They are all irrelevant or nonrenormalizable and one cannot throw
away all of them. Hence, one has to find the way to deal with them or to give up.

Evidently there are no problems at the tree level, where one can drop the contributions
from the higher order operators, but in the loops one is faced with severe properties of
nonrenormalizable interactions: appearance of an infinite sequence of higher order operators.
This is true even at low energies (smaller than an intrinsic scale set up by dimensional
couplings).

Sometimes one talks about ‘low energy renormalizability’ of nonrenormalizable theories
assuming the ignorance of the contributions of these higher order operators. Within this
context one discusses the ‘power-law running’ of couplings [3]. This seemingly an attractive
idea needs a thorough investigation.

In higher dimensional theories (meaning the dimension is higher than the critical
dimension of a given interaction which is usually 4) one can approach this problem in two
ways: either to consider the theory directly in (flat) extra dimensions and try to cope with
power-like divergences, or to use the kind of Kaluza–Klein approach with (compact) extra
dimensions and consider four-dimensional theory with an infinite tower of K–K modes [4].
In the first case, one faces the problem of appearance of new higher dimensional operators as
the UV counter terms, and in the latter one, the problem of divergence of the sums over the
K–K states. Nevertheless, it is claimed that at low energies when we ignore (in a sense of
effective theory) the higher order operators or cuts the divergence of the sum introducing a
cut-off momentum, we get the power-like behaviour of the Green functions or the power-law
running of the original couplings [3]. Similar results follow from the renormalization group
(RG) approach in the manner of Wilson based on the ε-expansion and analytical continuation
of the perturbation theory expansion above the critical dimension. In this case, one has
a nonperturbative fixed point where the theory possesses conformal invariance so that the
effective coupling becomes dimensionless that is sometimes referred to as nonperturbative
renormalizability [5, 6]. Here, the higher order operators are suppressed in the infrared
domain and the Green functions in the vicinity of the fixed point exhibit the power-like
behaviour [7].

However, the running literally means the summation of the leading asymptotics (the
leading logs or leading powers). Hence, assuming these considerations to be correct, one sums
up the leading contributions of an infinite sequence of diagrams into the ‘running’ quantities.
If this is true, at least at low energies, one has to be able to check by explicit calculations
of diagrams how the leading terms are summed up. This means that they are essentially
predicted prior to the calculation. It is very well known how it works in renormalizable
theories within the renormalization group approach. The question is whether it also works in
the nonrenormalizable case.

The purpose of this paper is to demonstrate that indeed the structure of local quantum field
theory (QFT) even in nonrenormalizable theories reveals the one-loop origin of the leading
asymptotics despite the fact that there is no simple closed expression for the amplitudes like
in the renormalizable case. Our results, including explicit calculation of the diagrams in
some nonrenormalizable models, do not support the idea of the naı̈ve ‘power-law running’
of couplings and lead (with one miraculous exception) to complicated expressions without
obvious summation pattern.
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2. Renormalization operation in local QFT

The essence of the diagram behaviour can be figured out from the structure of the
so-called R(enormalization)-operation valid in any local QFT. It basically states that genuine
UV divergences even in nonrenormalizable theories are always local (or quasi-local), i.e.
contain a limited number of derivatives. So the bare Lagrangian being properly regularized
contains all possible local counter terms. In their turn, these counter terms are in one-to-one
correspondence with the logarithms that appear on top of the powers of momenta.

Since the bare Lagrangian does not depend on the renormalization scale, the explicit
dependence of the counter terms on the scale has to be compensated by the inexplicit
dependence of the couplings. In the case of a renormalizable Lagrangian, there is one or
a few couplings, and differentiating the bare Lagrangian with respect to a scale one gets the
corresponding RG equations. For the dimensional regularization one gets the so-called pole
equations [8] that relate the higher order poles with the lowest one in all orders of perturbation
theory. In particular, taking the one-loop contribution to the lowest pole one recovers the whole
infinite series of the leading pole terms. In the case of a single coupling they are summed into
a geometric progression

gbare = (µ2)ε
g

1 + bg/ε
, (1)

where the coefficient b comes from the one-loop β-function. For several couplings the
expressions are more complicated but the higher order terms can still be summed up and are
completely defined by the one-loop contribution.

For the nonrenormalizable Lagrangian, the R-operation still holds, but now one has an
infinite number of terms in the bare Lagrangian. Even if one starts with the finite number
of terms new higher order operators will be generated via the UV counter terms. Moreover,
since the couplings in the nonrenormalizable case are dimensionful (as it always happens in
extra dimensions), the diagrams reveal only higher dimensional operators to compensate the
negative dimension of the coupling. The original operators do not appear. So the counter terms
possess the triangle structure: each operator gives a contribution to the renormalization of the
higher operators and not to itself and lower ones. Still, despite this cumbersome picture, it has
the same structure as in renormalizable theories. The higher order poles are still defined by the
lowest one and the leading ones are determined by the one-loop diagrams. The corresponding
pole equations for a general QFT theory were written in [9]. We present them here without a
derivation:

LBare = (µ2)ε

(
L +

∞∑
n=1

An(L)

εn

)
, (2)

(
L

δ

δL
− 1

)
An(L) = β(L)

δ

δL
An−1(L), β(L) =

(
L

δ

δL
− 1

)
A1(L), (3)

where An(L) means that the corresponding counter term is calculated starting from the
Lagrangian L.

Performing loop expansion and taking into account that the counter terms An(L) are
homogeneous functions

An(L) =
∞∑

k=n

Ank(L), Ank(λL) = λkAnk(L)
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(here the first subscript denotes the order of the pole term, and the second one, the number of
loops), one can reduce equation (3) to

(
λ

δ

δλ
− 1

)
An(λL)|λ=1 = d

dη
An−1(L + ηβ(L))|η=0 (4)

β(L) =
(

λ
δ

δλ
− 1

)
A1(λL)|λ=1 =

∞∑
k=n

kA1k(L). (5)

For the leading poles this leads to

Ann(L) = 1

n

d

dη
An−1n−1(L + ηA11(L))|η=0. (6)

One can clearly see from equation (6) that if one knows the one-loop contribution to the
simple pole, namely A11, then one knows via a recursive procedure all the leading terms Ann.
We would like to stress once again that this statement and equation (6) are true in any theory,
renormalizable or nonrenormalizable.

However, there is some crucial difference in application of this recursion to the
renormalizable or nonrenormalizable theories. While in the renormalizable theories one
has a finite number of one-loop diagrams contributing to A11 that are constructed from the
original Lagrangian, in the nonrenormalizable case in general one has an infinite number of
such one-loop diagrams involving new higher dimensional operators. So unless one has some
hint how these diagrams are related to one another, one has an infinite number of unknown
coefficients in A11.

Consider the scalar field theories when the original interaction Lagrangian does not contain
derivatives. In four dimensions the explicit closed expression for A11 has the form [10]

A11(L) = − 1

(4π)2

1

4

δ2L
δφ2

× δ2L
δφ2

. (7)

Natural generalization of this formula to D dimensions would be

A11(L) = − 1

(4π)D/2

	(D/2 − 1)

4	(D − 2)

δ2L
δφ2

(∂2)D/2−2 δ2L
δφ2

. (8)

However, when D > 4 there are other one-loop divergent diagrams having more external legs.
By taking into account higher dimensional operators which appear in higher loops the number
of these terms increases. To reproduce this increasing sequence of terms we conjecture that
in D dimensions the one-loop counter term has the form

A11(L) = − 1

(4π)D/2

	(D/2 − 1)

4	(D − 2)

δ2L
δφ2

(∂2)D/2(
∂2 + δ2L

δφ2

)2

δ2L
δφ2

= − 1

(4π)D/2

	(D/2 − 1)

4	(D − 2)

δ2L
δφ2

(∂2)D/2−2(
1 + ∂−2 δ2L

δφ2

)2

δ2L
δφ2

, (9)

where the denominator is understood as a geometric progression with derivatives acting on
expansion terms so as to cancel all nonlocalities ∂−2. Hence, for a given D one has only a finite
number of terms to contribute. However, while calculating Ann, according to equation (6),
one has to replace L by A11, which may contain extra derivatives. These extra derivatives
can also cancel the ∂−2 terms, so the expansion goes further. The general recipe is: use
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equation (6) for Ann with A11(L) given by equation (9) and expand the denominator until the
nonlocal terms are cancelled by the corresponding derivatives. Surely, at a given order of
perturbation theory only a finite number of expansion terms contribute.

Below we illustrate these statements considering calculation of the leading order terms
explicitly in a number of models. These calculations prove that equation (6) is valid, but the
numbers obtained (with one exception) do not reveal any obvious summation pattern.

3. Explicit calculations in nonrenormalizable models

For the sake of simplicity we consider a set of massless scalar field theories within the
framework of dimensional regularization. When the coupling g in a given dimension D has a
negative dimension, the theory is nonrenormalizable in the usual sense.

3.1. D = 6, φ4
(6)

Let us start with the Lagrangian

Lint = −λφ4

4!
(10)

in D = 6 − 2ε. The coupling λ has a negative dimension [λ] = −2 + 2ε that leads to an
infinite series of the counter terms containing higher order operators generated via loop
expansion. One has, according to equation (9),

A11(L) = − 1

(4π)3

1

24
L′′ ∂2

(1 + ∂−2L′′)2
L′′ = − 1

(4π)3

1

24

(
λ2

4
φ2∂2φ2 +

λ3

4
(φ2)3

)
, (11)

where following the above-mentioned recipe we omitted the nonlocal terms. Hereafter we
use the notation L′′ ≡ δ2L

δφ2 . Two terms of the expansion in equation (11) correspond to the
one-loop two-point and triangle diagrams, respectively.

If one substitutes equation (9) into (6), one gets for A22

2A22(L) = − 1

(4π)3

1

24

{
[A11(L)]′′

∂2

(1 + ∂−2L′′)2
L′′ − 2L′′ [A11(L]′′

(1 + ∂−2L′′)3
L′′

+L′′ ∂2

(1 + ∂−2L′′)2
[A11(L)]′′

}
, (12)

where A11 is given by equation (11). Substituting (11) into (12) and performing the expansion
of the geometric progression, one finally gets

A22 = −
(

1

(4π)3

1

24

)2 {
λ3

8
(φ2∂2φ2)′′∂2φ2 +

λ4

8
[(φ2)3]′′∂2φ2 +

3λ4

16
(φ2∂2φ2)′′(φ2)2

+
3λ5

16
[(φ2)3]′′(φ2)2 +

3λ5

16
(φ2)2(φ2∂2φ2)′′∂−2φ2

}
. (13)

The tricky point here is the interference of the variational derivative with respect to φ

and the ordinary spacetime derivative. This requires some definition. Let us first evaluate the
spacetime derivatives and then the variational derivatives

(φ2∂2φ2)′′ = 2(φ3∂2φ + φ2(∂φ)2)′′

= 4(3φ∂2φ + 3φ2∂2 + 4φ∂φ∂ + (∂φ)2 + φ2∂∂). (14)
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When the spacetime derivative is left free, we understand it as acting on the propagator of the
corresponding one-loop diagram. Schematically it is shown below

where the crossed lines mean the corresponding derivatives.
The next step is the reduction of the diagram with derivative(s) to the one without them.

Usually this step is straightforward and is performed by analysing the corresponding one-loop
integral. In this particular case, one has

(φ2∂2φ2)′′ ⇒ 4

(
3p2

1 + 3 ∗ 0 − 4pp1

2
+ p1p2 +

p2

2

)
φφ

= 8p2
1φφ = 8φ∂2φ, (15)

where p is the momentum entering the loop, and p1 and p2 are the momenta of each leg.
Here we take the symmetrical point where p2 = 4

3p2
1 = 4

3p2
2, p1p2 = − 1

3p2
1.

Now let us take the third term in (13). Here, we have triangle diagrams

Again reducing the diagram with derivatives to the one without them one obtains

(φ2∂2φ2)′′ ⇒ 4

(
3

(
−p2

12

3

)
+ 3p2

1 − 8

5
p2

1 +
5

6
p2

12 +
pp1

2

)
φφ = 7λ4

10
φ∂2φ,

where p1 and p2 are the momenta in each leg and p12 is the momentum entering in one vertex.
Here we take the symmetrical point where p1p2 = − 1

5p2
1 and p2

12 = 8
5p2

1.
We are left with the last term in equation (13). Here one has the box diagram which is

convergent in D = 6 if there are no derivatives. This means that only the second and the last
terms of equation (14) contribute. One has

The first diagram is a triangle one and the second is easily reduced to it. As a result one
has

(φ2∂2φ2)′′ ⇒ 4

(
3

2
− 1

2

)
(−)φφ = −4φφ, (16)

where the minus sign of the last term is due to the reduction of the box diagram to a triangle
one.

Adding up all terms equation (13) finally leads to

A22 = −
(

1

(4π)3

1

24

)2 {
λ3(φ∂2φ)∂2φ2 +

15λ4

4
(φ2)2∂2φ2 +

7λ4

10
φ∂2φ(φ2)2

+
45λ5

8
(φ2)2(φ2)2 − 3λ5

4
(φ2)2(φ2)2

}
. (17)
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One may proceed further and get

A33 = −
(

1

(4π)3

1

24

)3 {
λ4

6
[2(φ∂2φ)∂2(φ∂2φ) + ((φ∂2φ)∂2φ2)′′∂2φ2

+ (φ2∂2(φ∂2φ))′′∂2φ2] + · · ·
}

= −
(

1

(4π)3

1

24

)3 {
2λ4

3
[2(φ∂2φ)∂2(φ∂2φ) + ∂2φ∂2φ∂2φ2 + φ∂2∂2φ∂2φ2] + · · ·

}
,

(18)

where we keep only the terms quartic in fields.
To compare these expressions with explicit diagram calculation, it is useful to transfer to

the momentum representation. Then the spacetime derivative means some momenta with the
proper symmetrization which depends on the number of legs. Thus, equations (11), (17) and
(18) become

A11 = − 1

(4π)3

1

24

(
−λ2

12
(φ2)2(s + t + u) +

λ3

4
(φ2)3

)
,

A22 = −
(

1

(4π)3

1

24

)2
{

λ3

12
(s + t + u)2(φ2)2 − λ4 67

60
(φ2)3

6∑
i=1

p2
i + λ5 39

8
(φ2)4

}
, (19)

A33 = −
(

1

(4π)3

1

24

)3 {
−λ4

72
[2(φ2)2 + (φ2)2 + (φ2)2](s + t + u)3 + · · ·

}
.

We have checked by explicit diagram calculations that equations (19) are indeed correct.
It is interesting to consider the four-point function. The Lagrangian, together with the

corresponding counter terms, looks like

φ4 : − λ

24
+

λ2

(4π)3

1

24ε

s + t + u

12
− λ3

(4π)6

1

(24ε)2

(s + t + u)2

12
+

λ4

(4π)9

1

(24ε)3

(s + t + u)3

18
+ · · ·

= − λ

24

[
1 − λ

(4π)3ε

s + t + u

12
+

(
λ

(4π)3ε

)2 (
s + t + u

12

)2 1

2

−
(

λ

(4π)3ε

)3 (
s + t + u

12

)3 1

6
+ · · ·

]

= − λ

24
exp

(
− λ

(4π)3ε

s + t + u

12

)
. (20)

One can see that the first three terms remarkably remind the expansion of the exponent.
We have checked this fact by explicit calculation of the diagrams up to four loops and with the
help of the pole equations (3) up to A55. In the latter case, unlike the diagram calculation, it
is straightforward and can be easily continued further. So far we failed to find all order proof
that everything is summed up to the exponent, though it seems quite reasonable.

The pole relation (20) evidently leads to the corresponding expression for the four-point
function

	4 = exp

[
λ

(4π)3

s

4
log(s/µ2)

]
, (21)

where we substituted symmetric asymptotics s = t = u.
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Two comments are in order.

(1) In nonrenormalizable theories, due to the presence of an infinite series of operators
one has an infinite number of normalization conditions. That is why the theory is not
defined. However, the leading poles (or the leading logarithms) are independent (!) of
these conditions. Thus, the leading behaviour is defined unambiguously.

(2) Equation (21) has quite an unusual form different from the geometric progression expected
from the naı̈ve ‘power-law running’. Whether it is occasional or a common feature of
nonrenormalizable theories needs to be clarified.

To check this exponential behaviour we made similar calculations in several other models.

3.2. φ4
(8), φ

4
(10) and φ4

(D)

Let us first consider the D = 8 case. According to equation (9), A11 takes the form

A11(L) = − 1

(4π)4

1

240
L′′ ∂4

(1 + ∂−2L′′)2
L′′

= − 1

(4π)4

1

240

(
λ2

4
φ2∂4φ2 +

λ3

4
∂2φ2(φ2)2 +

3λ4

16
(φ2)4

)
, (22)

where we again omitted the nonlocal terms. Obviously, with the increase of dimension the
length of the A11 term increases; A22 then becomes

A22 = −
(

1

(4π)4

1

240

)2 {
λ2

8
(φ2∂4φ2)′′∂4φ2 + · · ·

}
, (23)

where we kept only the terms quartic in fields.
Here again we are faced with the problem of evaluating the variational derivatives. We

first evaluate the spacetime derivatives

(φ2∂4φ2)′′ = 4∂2φ∂2φ + 4φ∂2∂2φ + 16∂φ∂∂2φ + 8∂∂φ∂∂φ

+ 8φ(2∂2φ∂2 + ∂2∂2φ + φ∂2∂2 + 4∂∂2φ∂ + 4∂φ∂∂2 + 4∂∂φ∂∂)

+ 2φ2(4∂∂∂∂). (24)

The meaning of partial derivatives acting on the right is understood as above in a sense of
acting on the lines of the one-loop diagrams. This gives

A22 = −
(

1

(4π)4

1

240

)2

×
{

λ2

8

(
20

7
∂2φ∂2φ + 4φ∂2∂2φ + 2∂2∂2φ2 +

120

7
∂∂φ∂∂φ + 16∂φ∂∂2φ

)
∂4φ2 + · · ·

}
,

(25)

Unlike the D = 6 case, the expression for A22 in D = 8 does not look simple. Indeed,
in the momentum representation it is not expressed in terms of the Mandelstam variables s, t

and u and at the symmetrical point it looks like

φ4 : − λ

24
− λ2

(4π)4

1

240ε

s2

4
− λ3

(4π)8

1

(240ε)2

55s4

112
+ · · ·

= − λ

24

(
1 +

λ

(4π)4

s2

40ε
+

λ2

(4π)8

s4

(40ε)2

55

168
+ · · ·

)
. (26)
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This result is also confirmed by explicit diagrammatic calculation. One cannot see any trace
of exponent here. Moreover, it does not look like any other simple function since, as we have
already mentioned, it cannot be expressed in terms of the Mandelstam variables.

We have carried out the same calculation in D = 10. Equation (26) in this case becomes

φ4 : − λ

24
+

λ2

(4π)5

1

3360ε

s3

4
− λ3

(4π)10

1

(3360ε)2

91s6

192
+ · · ·

= − λ

24

(
1 − λ

(4π)5

s3

560ε
+

λ2

(4π)10

s6

(560ε)2

91

288
+ · · ·

)
. (27)

Again one can see no trace of exponent. To understand it better, we have calculated the
second-order term in the case of φ4 theory in D dimensions. The simplest way it can be done
is by explicit diagram calculation. The result is

φ4 : − λ

24

{
1 +

λ

(4π)D/2

(−1)D/23	(D/2 − 1)

2	(D − 2)

sD/2−2

ε

+

(
λ

(4π)D/2

(−1)D/23	(D/2 − 1)

2	(D − 2)

sD/2−2

ε

)2

c(D) + · · ·
}

, (28)

where

c(D) = 1

3
+

25−D

33−D/2
F21

(
3D

2
− 4, 2 − D

2
; D − 1

2

∣∣∣∣ 1

3

)
.

This complicated expression is remarkably simplified for particular values of D and at low
dimensions it is

c D = 4 D = 6 D = 8 D = 10 D = 12 D → ∞
1 1/2 55/168 91/288 6005/18 304 →1/3

4. Conclusion

Summarizing we would like to stress once again that

(1) direct calculations of Feynman diagrams demonstrate all characteristic features and
problems of nonrenormalizable interactions;

(2) for nonrenormalizable interactions like for renormalizable ones the leading divergences
(asymptotics) are defined by the one-loop diagrams;

(3) in the nonrenormalizable case contrary to the renormalizable one the number of one-loop
diagrams is infinite;

(4) we conjectured the form of the one-loop counter term in arbitrary scalar QFT with
derivativeless interactions and checked it by explicit calculations in lower loops;

(5) using the renormalization group technique, it is possible to sum up the leading asymptotics
which are independent of the arbitrariness in subtraction of higher order operators;

(6) unlike the renormalizable case, this summation does not reveal (with one exception so
far) any simple function; and

(7) the naı̈ve power-law running seems not to be valid.
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